Ardyafani Webpage's











{December 23, 2011}  

Bilangan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Artikel ini membahas ‘bilangan’ sebagai suatu konsep dalam matematika. Pengertian-pengertian lain dari ‘bilangan’ dapat dilihat pada Bilangan (disambiguasi).

Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.

Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasil bilangan lainnya sebagai keluran, disebut sebagai operasi numeris. Operasi uner mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, dan perpangkatan. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.

Daftar isi

[sembunyikan]

[sunting] Angka, bilangan, dan nomor

Dalam penggunaan sehari-hari, angka dan bilangan dan nomor seringkali disamakan. Secara definisi, angka, bilangan, dan nomor merupakan tiga entitas yang berbeda.

Angka adalah suatu tanda atau lambang yang digunakan untuk melambangkan bilangan. Contohnya, bilangan lima dapat dilambangkan menggunakan angka Hindu-Arab “5” (sistem angka berbasis 10), “101” (sistem angka biner), maupun menggunakan angka Romawi ‘V’. Lambang “5”, “1”, “0”, dan “V” yang digunakan untuk melambangkan bilangan lima disebut sebagai angka.

Nomor biasanya menunjuk pada satu atau lebih angka yang melambangkan sebuah bilangan bulat dalam suatu barisan bilangan-bilangan bulat yang berurutan. Misalnya kata ‘nomor 3’ menunjuk salah satu posisi urutan dalam barisan bilangan-bilangan 1, 2, 3, 4, …, dst. Kata “nomor” sangat erat terkait dengan pengertian urutan.

[sunting] Jenis bilangan-bilangan Sederhana

Ada berbagai jenis bilangan. Bilangan-bilangan yang paling dikenal adalah bilangan bulat 0, 1, -1, 2, -2, … dan bilangan-bilangan asli 1, 2, 3, …, keduanya sering digunakan untuk berhitung dalam aritmatika. Himpunan semua bilangan bulat dalam buku-buku teks aljabar biasanya dinyatakan dengan lambang Z dan sedangkan himpunan semua bilangan asli biasanya dinyatakan dengan lambang N.

Setiap bentuk rasio p/q antara dua bilangan bulat p dan bilangan bulat tak nol q disebut bilangan rasional atau pecahan. Himpunan semua bilangan rasional ditandai dengan Q.

[sunting] Konsep Hingga Terhitung dan Tak Terhitung

Unsur-unsur ketiga himpunan N, Z dan Q di atas masih bisa ‘diurutkan’ (enumerated) tanpa ada satu pun yg tersisa atau tercecer. Himpunan berukuran tak hingga yg bisa diurutkan ini disebut himpunan terhitung (Inggris: countable atau denumerable).

Himpunan semua bilangan alami (real numbers), yaitu semua bilangan rasional digabung dengan semua bilangan tak rasional (atau irasional), dinyatakan dengan lambang R. Himpunan ini selain berukuran tak hingga, juga himpunan tak terhitung sebab bisa dibuktikan secara matematis, setiap usaha untuk mengurutkannya selalu gagal, karena menyisakan bilangan alami.

Silakan baca http://planetmath.org/encyclopedia/CantorsDiagonalArgument.html untuk contoh pembuktian di atas. Fakta ini menjadi titik awal untuk membedakan dua konsep tak hingga dalam matematika: tak hingga terhitung dan tak hingga tak terhitung.

Untuk contoh bagaimana matematikawan mendefinisikan bilangan melalui berbagai aksioma, lihat struktur abstrak, bilangan asli atau universal.

[sunting] Benda apakah sebuah bilangan itu?

Setiap bilangan, misalnya bilangan yang dilambangkan dengan angka 1, sesungguhnya adalah konsep abstrak yang tak bisa tertangkap oleh indera manusia, tetapi bersifat universal. Misalnya, tulisan atau ketikan

1yang terlihat di layar monitor dan Anda baca saat ini bukanlah bilangan 1, melainkan hanya lambang dari bilangan 1 yang tertangkap oleh indera penglihatan Anda berkat keberadaan unsur-unsur kimia yang peka cahaya dan digunakan untuk menampilkan warna dan gambar di layar monitor.

Demikian pula jika Anda melihat lambang yang sama di papan tulis, yang Anda lihat bukanlah bilangan 1, melainkan serbuk dari kapur tulis yang melambangkan bilangan 1.

Teori bilangan pada saat ini jauh lebih kompleks daripada sekedar aritmatika dan aplikasinya lebih banyak pada berbagai ilmu dan teknologi mutakhir, misalnya pada kriptografi. Silakan Anda dapat membaca contoh isi mata kuliah teori bilangan dalam link ini : http://modular.fas.harvard.edu/edu/Fall2001/124/ Perlu diketahui, masalah dalam teori bilangan yang dikenal dengan Teorema Terakhir Fermat baru bisa dipecahkan setelah berumur ratusan tahun.

Konsep bilangan-bilangan yang lebih umum dan lebih luas memerlukan pembahasan lebih jauh, bahkan kadang-kadang memerlukan kedalaman matematis dan logika untuk bisa memahami dan mendefinisikannya. Misalnya dalam teori matematika, himpunan semua bilangan rasional bisa dibangun secara bertahap, diawali dari himpunan bilangan-bilangan asli.

[sunting] Pranala Luar

[sunting] Lihat pula

Sumber dari : http://id.wikipedia.org/wiki/Bilangan



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

et cetera
%d bloggers like this: